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Abstract—Three different functionalized b-cyclodextrins (b-CDs) bearing the C60 moiety linked covalently have been prepared in
good yields by reaction between the parent b-CD and [60]fullerene via 1,3-dipolar cycloaddition. These compounds have been fully
spectroscopically characterized and their electrochemical behavior has been investigated. Surprisingly, the electrochemical proper-
ties of the C60 cage remain unaltered even after chemical functionalization, making these systems very appealing as supramolecular
hosts for electron-transfer processes.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Since its discovery, [60]fullerene has been considered as
a powerful building block in material sciences and
medicinal chemistry due to its unique properties. In
particular, C60 shows a noticeable electron acceptor
capability as well as singular photophysical1 and electro-
chemical behavior.2 All these properties have been
exploited in the fabrication of pioneering organic photo-
voltaic devices3 as well as in the construction of supra-
molecular architectures.4 In addition, fullerene and its
derivatives exhibit satisfactory enzyme-inhibiting,5 radi-
cal quenching,6 and DNA-cleavage abilities.7

On the other hand, cyclodextrins (CDs) represent one of
the most studied molecular receptors in the field of
supramolecular chemistry due to their capability to
include various guest molecules in the hydrophobic
cavity.8 While the supramolecular complexation of C60

by CDs is a well explored topic,9 only few works are
reported on the CD-C60 conjugates. In fact, to the best
of our knowledge, the first CD derivatized with fullerene
showing water solubility has been described by Samal
and Geckeler.10 Photodriven DNA-cleaving properties
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have been successfully tested by Liu et al. in a b-CD-
C60 and in a bis-b-CD-C60 conjugate.11 Rassat and
co-workers have devoted a lot of effort in the search
for internal complexation in water of fullerene in the
CD cavity in bis-CD-C60 systems although they mainly
detected the presence of aggregates.12

In this letter, we present the synthesis, the spectroscopi-
cal characterization and the electrochemical investiga-
tion of three novel CD-C60 conjugates (6–8) with the
aim to furnish new systems that combine the binding
ability of cyclodextrins with the well known electro-
chemical properties of [60]fullerene. Furthermore,
changes in chemical structures should be reflected into
different CD-cavity receptivity with the subsequent effect
toward complexation.
2. Synthesis

The synthesis of CD-C60 conjugates 6–8 takes place in a
parallel way, as depicted in Scheme 1. The mono-6-azi-
do-b-CD (2),13 obtained from the readily available
mono-6-tosyl-b-CD 1,14 is reacted with methyl iodide,
acetic anhydride, and tert-butyldimethylsilyl chloride
to afford the parent cyclodextrin 3–5, respectively, in
high yields. Spectroscopical data matched those
reported in the literature. Hence, such azido-CDs are
in turn reacted with fullerene, in refluxing chlorobenzene
for 24 h, following a well established protocol,15 via
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Figure 1. UV–vis spectra of derivatives 6–8 in dichloromethane. Inset
shows spectra recorded in THF/H2O 1:9 (v/v) mixtures.
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1,3-dipolar cycloaddition to give rise the corresponding
azafulleroid 6–8 in 40–49% yields.

The CD-C60 derivatives so obtained have been readily
purified by flash chromatography (silica gel, DCM/
MeOH from 99:1 to 95:5, for 8 also 1% water is needed).
These CD-C60 conjugates are soluble in all the common
organic solvents as well as in THF/H2O mixtures with
up to 90% of water.16

All CD-C60 conjugated (6–8) have been satisfactorily
characterized by means of FT-IR, UV–vis, 1H and 13C
NMR, and MS techniques.17 FT-IR spectra clearly
showed the disappearance of N3 stretching band at
�2100 cm�1 and the subsequent appearance of a new
set of bands in the 750–500 cm�1 region, characteristic
of C60. The UV–vis spectra in dichloromethane and
in THF/H2O 1:9 (v/v) mixtures for target compounds
6–8 are reported in Figure 1. Similar spectra were
recorded for the three cyclodextrin–fullerene systems
despite differences in the solubilizing group nature,
namely methyl, acetyl, and TBDMS. All spectra show
the typical absorption features of azafulleroid mono-
adduct: a strong band at �257 nm and a shoulder at
�325 nm very similar to that of fullerene itself. It is
noteworthy that, in THF/H2O 1:9 mixtures, the elec-
tronic band at lower wavelength is slightly bathochromi-
cally shifted and, at the same time decreases in intensity
in comparison with the absorption at �325 nm (Abs260/
Abs330 ratio: �3.6 in DCM, �2.4 in THF/H2O 1:9, see
inset in Fig. 1). In addition in DCM the band offset is
100 nm blue-shifted. Such electronic behavior for C60

derivatives has been previously observed and ascribed
to the formation of the colloidal cluster generated from
the self association of fullerene moieties.18
1H NMR spectra of title compounds 6–8 were very
similar to those of the corresponding precursors. The
presence of more than 17 signals (about 32) between
135 and 150 ppm in the 13C NMR spectra is symptom-
atic for the open form of the [5,6] adducts due to its
lower symmetry, Cs, with respect to the C2v of [6,6]
closed adducts. This finding is in agreement with that
previously observed for other CD-C60 systems in which
fullerene is covalently connected to the CD through an
azo-bridge.19 Finally MALDI-TOF experiments showed
the presence of the molecular ion peak for all the
structures suggested.
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3. Electrochemistry

The redox properties of the electroactive CD-C60

systems were determined by cyclic voltammetry (CV)
measurements at room temperature in ortho-dichloro-
benzene/acetonitrile (oDCB/MeCN, 4/1 v/v) mixtures
as solvent, adding ferrocene as an internal reference.
The electrochemical data, shown in Figure 2 and col-
lected in Table 1, display the presence of four reduction
processes for 6–8.

These reduction waves correspond unambiguously with
the first four quasireversible reductions of the fullerene
sphere.2 On the other hand, CV of compound 7 shows
a broadened third wave that, at first glance, seems to
proceed from the combined reduction of C60 and C@O
groups, as previously observed.20 However, additional
squared wave voltammetry (SWV) experiments, in this
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Figure 2. Voltammogram of compounds 6–8 and C60 as reference (see
Table 1 for experimental conditions).

Table 1. Redox potentials of C60 and 6–8 (V vs Fc/Fc+)a

Compound E1
1=2 E2

1=2 E3
1=2 E4

1=2

C60 �1.03 �1.43 �1.89 �2.35
6 �1.03 �1.46 �1.94 �2.46
7 �1.09 �1.48 �1.94 �2.40
8 �1.03 �1.58 �2.11 �2.32

a Working electrode: GCE; quasireference electrode: Ag/Ag+; counter
electrode: Pt; 0.1 M Bu4NClO4; scan rate: 200 mV s�1; concentra-
tion: 0.3–0.6 · 10�3 M; solvent: oDCB/MeCN (4:1 v/v); ferrocene
was added as an internal reference. Values were determined within
the experimental error of ±5 mV.
case, evidenced no electrochemical contribution from
carbonyl groups. It is interesting to note that, for CD-
C60 systems 6 and 8, the first reduction potential is
60 mV less negative than that of 7 and the same with
that of pristine C60. To better understand if this behav-
ior stems from some kind of supramolecular organiza-
tion or it is simply characteristic for these systems,
further CV experiments have been carried out. Mixtures
of C60 and precursors 3–5 in 1:1 and 1:2 stoichiometric
ratios have been prepared and the voltammograms re-
corded showed no changes in the potentials. In addition,
no shift in the reduction potential after dilution of 6–8
solutions was observed. All these data demonstrate that
the good electrochemical response is intramolecular and
is own for these systems. In this case, in agreement with
the data reported in the literature for azafulleroids,21 the
cathodic shift in potentials produced upon saturation of
one fullerene double bond, is corrected by the better
electron accepting ability of azafulleroid due to the pres-
ence of the electronegative nitrogen atom. In addition,
further stabilization for the C60

�� specie may be derived
from when the fullerene cage is in correspondence of the
small rim of CD, as evidenced by preliminary molecular
mechanics simulations.

In summary, we have prepared and characterized three
new CD-C60 conjugates. The spectroscopical data col-
lected clearly indicate that fullerene cage is connected
to the CD moiety as the open form of the [5,6] adducts.
The electrochemical study, carried out for the first time
on such CD-C60 systems, revealed that, even after chem-
ical functionalization the electrochemical properties of
the fullerene moiety remain totally unaltered. This
behavior suggests that these electroactive species are
appealing electron acceptor–host systems for further
photophysical studies in the search for energy and elec-
tron-transfer processes toward small electron donor
guests such as ferrocene and tetrathiafulvalene. Further
investigations in this sense are currently underway.
Acknowledgments

Financial support from the University of Palermo
(Funds for selected topics) and Italian MIUR within
the National Project ‘Non-aromatic heterocyclic in ste-
reo-controlled processes’ is gratefully acknowledged.
The authors are indebted to Dr. Ma Angeles Herranz
for assisting in some CV experiments.
References and notes

1. Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695–
703.

2. Xie, Q.; Perez-Cordero, E.; Echegoyen, L. J. Am. Chem.
Soc. 1992, 114, 3978–3980.

3. (a) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F.
Science 1992, 258, 1474–1476; (b) Yu, G.; Gao, J.;
Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995,
270, 1789–1791.

4. Sánchez, L.; Martı́n, N.; Guldi, D. M. Angew. Chem., Int.
Ed. 2005, 44, 5374–5382.



8108 F. Giacalone et al. / Tetrahedron Letters 47 (2006) 8105–8108
5. Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.;
Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem.
Soc. 1993, 115, 6506–6509.

6. Chiang, L. Y.; Lu, F.-J.; Lin, J.-T. J. Chem. Soc., Chem.
Commun. 1995, 1283–1284.

7. (a) Nakamura, E.; Isobe, H.; Tomita, N.; Sawamura, M.;
Jinno, S.; Okayama, H. Angew. Chem., Int. Ed. 2000, 39,
4254–4257; (b) Bernstein, R.; Prat, F.; Foote, C. S. J. Am.
Chem. Soc. 1999, 121, 464–465.

8. (a) Szejtli, J. Chem. Rev. 1998, 98, 1743–1753; (b)
Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875–
1917; (c) Riela, S.; D’Anna, F.; Lo Meo, P.; Gruttadauria,
M.; Giacalone, R.; Noto, R. Tetrahedron 2006, 62, 4323–
4330, and references therein.

9. (a) Anderson, T.; Nilsson, K.; Sundahl, M.; Westman, G.;
Wennerström, O. J. Chem. Soc., Chem. Commun. 1992,
604–606; (b) Priyadarsini, K. I.; Mohan, H.; Tyagi, A. K.;
Mittal, J. P. J. Phys. Chem. 1994, 98, 4756–4759; (c)
Yoshida, Z.; Takekuma, H.; Takekuma, S.; Matsubara,
Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 1597–1599.

10. Samal, S.; Geckeler, K. E. Chem. Commun. 2000, 1101–
1102.

11. (a) Liu, Y.; Zhao, Y.-L.; Chen, Y.; Liang, P.; Li, L.
Tetrahedron Lett. 2005, 46, 2507–2511; (b) Liu, Y.; Liang,
P.; Chen, Y.; Zhao, Y.-L.; Ding, F.; Yu, A. J. Phys. Chem.
B 2005, 109, 23739–23744.

12. (a) Filippone, S.; Heimann, F.; Rassat, A. Chem. Com-
mun. 2002, 1508–1509; (b) Yang, J.; Wang, Y.; Rassat, A.;
Zhang, Y.; Sinaÿ, P. Tetrahedron 2004, 60, 12163–12168;
(c) Chen, Y.; Wang, Y.; Rassat, A.; Sinaÿ, P.; Zhang, Y.
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